

Table of contents

Introduction	 2
Learning profile	 3
Learning outcomes	 ······································

MINOFYKI: Minor in Applied Chemistry and Physics

MINOFYKI - Introduction

Introduction

Introduction

The aim of this track is to enable the students to build a broad knowledge skills base in applied chemistry and physics (including thermodynamics and kinetics) opening avenues to the main fields of chemical and environmental engineering, advanced materials engineering, as well as physical engineering. The acquired skills cover a wide range of physical scales, from atomic to macroscopic and industrial dimensions, and prepare to the professions of the engineering master in chemistry and materials science swell as the master in physical engineering (chemical and environmental engineering, sustainable chemistry and energy, nanotechnology, (nano)electronics, optics, advanced materials including biomaterials, sensors and transducers, etc.).

MINOFYKI - Teaching profile

Learning outcomes

Programme

DETAILED PROGRAMME BY SUBJECT

- Mandatory
- ☼ Optional
- Δ Not offered in 2024-2025
- O Not offered in 2024-2025 but offered the following year
- $\ensuremath{\oplus}$ Offered in 2024-2025 but not the following year
- $\Delta \, \oplus \, \text{Not offered in 2024-2025}$ or the following year
- Activity with requisites
- Open to incoming exchange students

Click on the course title to see detailed informations (objectives, methods, evaluation...)

30 crédits

Year 2 3

o Content:

O LMAPR1805	Introduction to materials science	Jean-Christophe Charlier (coord.) Pascal Jacques Bernard Nysten	[q2] [30h+30h] [5 Credits] [@]	x
O LMECA1901	Continuum mechanics.	Philippe Chatelain Issam Doghri	[q2] [30h+30h] [5 Credits] 🚇	X
○ LMAPR1491	Statistical & quantum physics	Jean-Christophe Charlier Xavier Gonze Luc Piraux Gian-Marco Rignanese	[q1] [30h+30h] [5 Credits] 🛞	x
O LMAPR1230	Organic chemistry	Sophie Demoustier Charles-André Fustin	[q1] [30h+30h] [5 Credits] 🚇	X
○ LMAPR1400	Kinetics and thermodynamics	Juray De Wilde Denis Mignon	[q2] [30h+30h] [5 Credits] 🚇	X
○ LMAPR1492	Materials physics	Jean-Christophe Charlier Xavier Gonze Luc Piraux Gian-Marco Rignanese	13 [q2] [37.5h+22.5h] [5 Credits]	x

THE PROGRAMME'S COURSES AND LEARNING OUTCOMES

For each UCLouvain training programme, a reference framework of learning outcomes

MINOFYKI - Information

Evaluation

The evaluation methods comply with the <u>regulations</u> concerning studies and exams. More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading "Learning outcomes evaluation method".

The evaluation methods comply with the <u>regulations</u> concerning studies and exams. More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading "Learning outcomes evaluation method".

Possible trainings at the end of the programme

Polytechnic minors provide students who have performed well and acquired a bachelor's qualification in engineering science-civil engineering, as part of a program which includes one of these minors, with unconditional access without further training to the master's in civil engineering which corresponds to this minor.

- For the minor in applied chemistry and physics: the master's in civil engineering in chemistry and material science and the master's in physicist-civil engineering.
- For the minor in construction: the master's in civil engineering in construction
- For the minor in electricity: the master's in electrician civil engineer
- For the minor in IT: the master's in IT civil engineer
- For the minor in mechanics: the master's in mechanic-civil engineer
- For the minor in applied mathematics: the master's in civil engineer in applied mathematics
- For a program which combines a major in electricity/minor in mechanics or major in mechanics/minor in electricity: the master's in electromechanical/civil engineering.

Contacts

Curriculum Management

Entity

Structure entity Denomination Faculty SST/EPL/FYKI

(FYKI)

Louvain School of Engineering

MINOFYKI: Minor in Applied Chemistry and Physics