UCLouvain PHYS2M1
2024 - 2025

Master [60] en sciences physiques

PHYS2M1 - Introduction

INTRODUCTION

Introduction

Le-la physicien-ne possède de grandes capacités de raisonnement et d'abstraction. Il elle se pose continuellement des questions sur le monde physique qui l'entoure dans le but de comprendre son fonctionnement. Il elle observe, émet des hypothèses, formalise les concepts et écrit et résout les équations qui les régissent afin de les confronter aux observations et à l'expérience. Grâce à sa formation scientifique poussée et polyvalente, il elle contribue aux grands défis de la Société d'aujourd'hui et de demain. Il elle participe à la recherche de pointe et à la résolution de questions importantes liées à la genèse et à l'évolution de l'Univers, aux interactions fondamentales entre particules élémentaires, à l'optique quantique, à la physique statistique, aux origines de la Terre, au changement climatique global, au développement durable, aux choix énergétiques, etc.

Les compétences développées par le.la physicien.ne dans le cadre de sa formation, en ce compris sa capacité à modéliser et caractériser de grands ensembles de données, peuvent être valorisées dans de nombreuses professions propres aux domaines de la physique actuelle, tels que la supraconductivité, l'instrumentation et la métrologie, la physique des lasers, la physique nucléaire, la physique non linéaire, la cosmologie, l'astrophysique, l'astronomie, la planétologie, la géophysique, la météorologie, la climatologie, l'océanographie et la glaciologie, ou à des domaines aussi variés que les sciences médicales, les sciences de l'espace, le traitement du signal, mais aussi les sciences actuarielles, la finance, la consultance, le milieu bancaire et tous les domaines où les méthodes statistiques, l'informatique et les outils liés à l'intelligence artificielle sont importants. Par ses aptitudes à travailler en équipe, le.la physicienne développe aussi des compétences en communication, en vulgarisation scientifique et en management. Ses diverses compétences lui permettront de contribuer à la création des métiers de demain.

Le Master [60] en sciences physiques a pour objectifs (1) de permettre à l'étudiant.e. d'approfondir sa connaissance des lois fondamentales et des outils essentiels de la physique d'aujourd'hui et (2) d'acquérir les compétences disciplinaires et transversales nécessaires pour exercer une activité professionnelle liée à la physique. Il ne donne pas accès au Doctorat en sciences.

Votre profil

PHYS2M1 - Profil enseignement

COMPÉTENCES ET ACQUIS AU TERME DE LA FORMATION

Observer et cerner la réalité physique du monde qui l'entoure, la comprendre, l'expliquer et la modéliser, tels sont les défis que l'étudiant.e du Master [60] en sciences physiques se prépare à relever. Ce programme vise à développer la maîtrise des lois fondamentales et des outils essentiels de la physique d'aujourd'hui. Il conduit à l'acquisition de compétences telles que la capacité d'analyse d'un problème physique, la capacité d'abstraction et de modélisation, la rigueur dans le raisonnement et dans l'expression, l'autonomie et l'aptitude à la communication, y compris en anglais.

Au terme de sa formation à la Faculté des sciences, l'étudiant.e aura acquis les connaissances et compétences disciplinaires et transversales nécessaires pour exercer de nombreuses activités professionnelles. Ses capacités de modélisation et de compréhension en profondeur des phénomènes, son goût pour la recherche et sa rigueur scientifique seront recherchés non seulement dans les professions scientifiques (recherche, développement, enseignement, etc.), mais aussi plus généralement dans la Société actuelle et future.

Au terme de ce programme, le diplômé est capable de :

- 1. Maitriser et utiliser de manière approfondie les savoirs spécialisés de la physique.
- 1.1 Formuler les concepts fondamentaux des théories physiques actuelles, en mettant en évidence leurs principales idées, et relier entre elles ces théories.
- 1.2 Identifier et appliquer des théories physiques à la résolution d'un problème.
- 1.3 Connaître et employer adéquatement les principes de la physique expérimentale: les mesures, leurs incertitudes, les instruments de mesure et leur calibration, le traitement de données par des outils informatiques.
- 1.4 Expliquer et concevoir une méthode de mesure et la mettre en Œuvre.
- 1.5 Modéliser des systèmes complexes et prédire leur évolution par des méthodes numériques, y inclus des simulations informatisées.
- 1.6 Retracer l'évolution historique des concepts physiques et reconnaître le rôle de la physique dans divers pans de l'ensemble des connaissances et de la culture.
- 2. Démontrer des compétences méthodologiques, techniques et pratiques utiles à la résolution des problèmes en physique.
- 2.1 Choisir, en connaissant leurs limitations, une méthode et des outils pour résoudre un problème inédit en physique.
- 2.2 Concevoir et utiliser des instruments pour effectuer une mesure ou pour étudier un système physique.
- 2.3 Manipuler correctement des outils informatiques d'aide à la résolution de problèmes en physique, tout en connaissant les limitations de ces outils.
- 2.4 Concevoir des algorithmes adaptés aux problèmes poursuivis et les traduire en programmes informatiques.
- 2.5 Appliquer des outils adéquats, tant de base que plus avancés, pour modéliser des systèmes physiques complexes et résoudre des problèmes spécifiques dans les domaines d'application de la physique.
- 3. Appliquer une démarche et un raisonnement scientifique, et dégager, en suivant une approche inductive ou déductive, les aspects unificateurs de situations et expériences différentes.
- 3.1 Evaluer la simplicité, la clarté, la rigueur, l'originalité d'un raisonnement scientifique et en déceler les failles éventuelles.
- 3.2 Développer ou adapter un raisonnement physique et le formaliser.
- 3.3 Argumenter la validité d'un résultat scientifique et adapter son argumentation à des publics variés.
- 3.4 Montrer les analogies entre différents problèmes en physique, afin d'appliquer des solutions connues à de nouveaux problèmes.
- 4. Construire des nouvelles connaissances et réaliser une recherche relative à des problématiques touchant à un ou plusieurs domaines de la physique actuelle.
- 4.1 Développer de façon autonome son intuition physique en anticipant les résultats attendus et en vérifiant la cohérence avec des résultats déjà existants.
- 4.2 Analyser un problème de recherche et sélectionner les outils adéquats pour l'étudier de façon approfondie et originale.
- 5. Apprendre et agir de manière autonome afin de poursuivre sa formation d'une manière indépendante.
- 5.1 Rechercher dans la littérature physique des sources et évaluer leur pertinence.
- 5.2 Lire et interpréter un texte de physique avancé et le relier aux connaissances acquises.
- 5.3 Acquérir de nouvelles compétences scientifiques et techniques.
- 5.4 Juger de façon autonome la pertinence d'une démarche scientifique et l'intérêt d'une théorie physique.
- 6. Travailler en équipe et collaborer avec des étudiants et des professionnels d'autres champs disciplinaires afin d'atteindre des objectifs communs et de produire des résultats.
- 6.1 Partager les savoirs et les méthodes.
- 6.2 Identifier les objectifs et responsabilités individuels et collectifs et travailler en conformité avec ces rôles.
- 6.3 Gérer, individuellement et en équipe, un projet.
- 6.4 Evaluer sa performance en tant qu'individu et membre d'une équipe et évaluer les performances des autres.
- 6.5 Reconnaître et respecter les points de vue et opinions des membres d'une équipe.
- 7. Communiquer efficacement en français et en anglais et de manière adaptée au public visé.
- 7.1 Rédiger des textes en respectant les conventions et règles spécifiques de la discipline.
- 7.2 Structurer un exposé oral et faire apparaître les éléments clés du sujet.
- 7.3 Distinguer les objectifs, les méthodes et les concepts de la thématique présentée.

- 7.4 Adapter l'exposé au niveau d'expertise des interlocuteurs.
- 7.5 Utiliser des outils médiatiques et informatiques variés pour communiquer (expliquer, rédiger, publier) des concepts et des résultats physiques.
- 7.6 Discuter avec des collègues d'autres disciplines.
- 8. Aborder activement une thématique de recherche.
- 8.1 Atteindre un niveau d'expertise dans un domaine choisi de la physique contemporaine.
- 8.2 Approfondir un sujet au-delà des connaissances actuelles.

STRUCTURE DU PROGRAMME

Le programme menant au grade de Master [60] en sciences physiques comprend :

- 30 crédits de formation spécialisée en physique, à choisir dans une liste d'unités d'enseignement organisées en blocs matières,
- 2 crédits de formation en sciences humaines, à choisir dans une liste d'unités d'enseignement,
- 18 crédits d'activités liées au mémoire de fin d'études,
- 10 crédits d'unités d'enseignement supplémentaires, à choisir dans une liste d'unités d'enseignement organisées en blocs matières.

Des programmes types, en fonction des différentes orientations de la recherche en sciences physiques à l'UCLouvain, sont proposés sur le portail de l'Ecole de physique dans la rubrique « Enseignement et formation ». Ceux-ci sont au nombre de neuf. Ils portent sur :

- la physique statistique et la physique mathématique,
- les aspects formels des interactions fondamentales,
- la théorie et la phénoménologie des interactions fondamentales,
- l'expérimentation en physique des interactions fondamentales,
- l'instrumentation en physique des interactions fondamentales,
- la physique atomique, moléculaire et l'optique du point de vue théorique,
- la physique atomique, moléculaire et l'optique du point de vue expérimental,
- · la climatologie physique,
- la physique de la Terre et des planètes.

PHYS2M1 Programme

PROGRAMME DÉTAILLÉ PAR MATIÈRE

Tronc Commun [50.0]

- Obligatoire
- 🗱 Au choix
- Δ Exceptionnellement, non organisé cette année académique 2024-2025
- O Non organisé cette année académique 2024-2025 mais organisé l'année suivante
- ⊕ Organisé cette année académique 2024-2025 mais non organisé l'année suivante
- $\Delta \oplus \mathsf{Exceptionnellement},$ non organisé cette année académique 2024-2025 et l'année suivante
- Activité avec prérequis
- Cours accessibles aux étudiants d'échange
- [FR] Langue d'enseignement (FR, EN, ES, NL, DE, ...)

Cliquez sur l'intitulé du cours pour consulter le cahier des charges détaillé (objectifs, méthodes, évaluation, etc..)

o Formation spécialisée en physique (30 crédits)

NB : Des programmes types en fonction des orientations de la recherche en sciences physiques à l'UCLouvain sont proposés sur le site Web de l'école de physique. L'étudiant-e choisit 30 crédits parmi :

PHYS2M1: Master [60] en sciences physiques

☼ Physique de la Terre, des planètes et du climat

☼ LPHYS2260 Geodesy and GNSS (Global Navigation Satellite System)

ENSEIGNEMENTS SUPPLÉMENTAIRES

Pour accéder à ce master, l'étudiant-e doit maîtriser certaines matières. Si ce n'est pas le cas, elle ou il se verra ajouter, par le Jury, au premier bloc annuel de son programme de master, les enseignements supplémentaires nécessaires.

Obligatoire

🛭 Au choix

 Δ Exceptionnellement, non organisé cette année académique 2024-2025

COURS ET ACQUIS D'APPRENTISSAGE DU PROGRAMME

Pour chaque programme de formation de l'UCLouvain, un référentiel d'acquis d'apprentissage précise les compétences attendues de tout-e diplômé-e au terme du programme. Les fiches descriptives des unités d'enseignement du programme précisent les acquis d'apprentissage visés par l'unité d'enseignement ainsi que sa contribution au référentiel d'acquis d'apprentissage du programme.

Bachelier en sciences de l'ingénieur - orientation ingénieur civil	Accès moyennant compléments de formation
Bacheliers de la Communauté flamande de Belgique	
Bachelor in de fysica	Accès direct
Bacheliers étrangers	
Attention : Les conditions d'accès pour l'année 2025-26 ont été mises à jour et peuvent être consultées dans ce document pdf.	Accès direct

Bacheliers non universitaires

> En savoir plus sur les passerelles vers l'université

Diplômés du 2° cycle universitaire

Diplômes	Conditions spécifiques	Accès	Remarques
Licenciés			
Sans objet		-	
Masters			
Sans objet		-	

Diplômés de 2° cycle non universitaire

Accès par valorisation des acquis de l'expérience

> Il est possible, à certaines conditions, de valoriser son expérience personnelle et professionnelle pour intégrer une formation universitaire sans avoir les titres requis. Cependant, la valorisation des acquis de l'expérience ne s'applique pas d'office à toutes les formations. En savoir plus sur la Valorisation des acquis de l'expérience.

Accès sur dossier

L'accès sur dossier signifie que, sur base du dossier soumis, l'accès au programme peut soit être direct, soit nécessiter des compléments de formation pour un maximum de 60 crédits ECTS, soit être refusé.

La première étape de la procédure consiste à introduire un dossier en ligne (voir www.uclouvain.be/fr/etudier/inscriptions/futurs-etudiants.html).

Les étudiants souhaitant une admission sur dossier sont invités à consulter les critères d'évaluation des dossiers.

Procédures d'admission et d'inscription

Consultez le Service des Inscriptions de l'université.

PHYS2M1: Master [60] en sciences physiques

PÉDAGOGIE

La plupart des unités d'enseignement sont données par défaut en langue anglaise.

Diverses méthodes pédagogiques sont employées: cours magistraux, cours en classe inversée, apprentissage par projets, ... Des séances d'exercices et de travaux pratiques en laboratoire sont organisées pour certaines unités d'enseignement. Des projets personnels ou en groupe sont prévus pour la majeure partie des unités d'enseignement. Ces projets interviennent de manière non négligeable (environ 20%) dans la note finale.

Quasiment toutes les unités d'enseignement disposent d'un site internet sur la plate-forme MoodleUCL. Des informations utiles y sont déposées, ainsi que les syllabi et d'autres documents indispensables au travail de l'étudiant.e.

Le mémoire est une activité formative qui doit amener l'étudiant.e à démontrer sa capacité à (1) traiter en profondeur un problème de physique dans toute sa complexité réelle, en menant une recherche personnelle, sous la direction d'un promoteur, et (2) rédiger une synthèse de son travail et la défendre en public de façon rigoureuse et pédagogique, tout en pouvant répondre à des questions relativement pointues. Les différentes étapes sont : constitution d'une bibliographie pertinente sur le sujet, lecture et compréhension des

PHYS2M1: Master [60] en sciences physiques

Jury

- Président: Christophe Ringeval
- Secrétaire: Christophe Delaere
- Conseiller aux études: François Massonnet
 Conseiller aux études: Gauthier Durieux

Personne(s) de contact

• Gestionnaire administrative du programme annuel de l'étudiant-e (PAE): Catherine De Roy