

At Louvain-la-Neuve - 120 credits - 2 years - Day schedule - In English Dissertation/Graduation Project : YES - Internship : optional Activities in English: YES - Activities in other languages : optional Activities on other sites : NO Main study domain : Sciences de l'ingénieur et technologie Organized by: Louvain School of Engineering (EPL) Programme acronym: FYAP2M - Francophone Certification Framework: 7

Table of contents

FYAP2M - Teaching profile

Learning outcomes

Physical engineers master the physical aspects of how objects function and their interaction with the environment (waves, light, ions, electric and magnetic fields, temperature gradients). Physical engineers have dual training in experiments and simulation. They are capable of using theories and formal representations of objects thanks to numerical simulation tools. They are also capable of carrying out laboratory-based experiments. Their comprehensive understanding of physical properties allows them to make the connection between properties on an atomic scale with those that are macroscopic.

Due to the in-depth study of different fields of physics (material physics, optics, electromagnetics, electronics, mechanics, quantum physics, etc.), the Master's degree programme in physical engineering (FYAP) prepares students for numerous jobs and specialisations in the industrial sector as well as participation in research-based technological activities.

Physical engineers are called on to resolve technological problems that are often complex and multidisciplinary in nature, linked to the design and creation of materials, devices and systems. They can act as an interface between different professions that use functional materials. They are called on to innovate in a specific technological environment.

Physical engineers systematically take into account constraints, values, rules (both legal and ethical) and economics. Their solid scientific background allows them to be autonomous enough to manage complex industrial projects. They are comfortable working as part of a team and communicating effectively even in English.

On successful completion of this programme, each student is able to :

1.Demonstrating their mastery of a solid body of knowledge in basic engineering sciences allowing them to understand and solve problems related to technological and industrial applications in the physical sciences.

1.1 Identify and use concepts, laws, and appropriate reasoning to solve a given problem (for example, identifying laws and materials to go from LED to white light; designing energy convertors based on thermoelectric elements; creating materials and devices to store and/ or transfer information; designing photovoltaic panels with optimal output.)

1.2 Identify and use appropriate modelling and calculation tools to solve problems.

1.3 Verify solutions to a given problem.

2.Organise and carry out an engineering process in a high-tech field that requires the use of fundamental tools and concepts in order to solve a particular problem.

2.1 Analyse a problem and formulate a specifications note.

2.2. Model the problem and design one or more original technical solutions in response to the specifications note (for example, the optimisation and/or combination of materials for thermal insulation), develop measures for electrical and thermal classification of a given material, choose materials for light emission (LEDs) or the creation of photovoltaic panels.

2.3 Evaluate and classify solutions in terms of all the figures in specifications notes: efficiency, feasibility, quality, ergonomics, and security in the professional environment.

2.4 Implement and test a solution through a mock-up or a prototype and/or a numerical model.

2.5 Make recommendations to improve the operational character of a solution under consideration.

3.Organise and carry out a research project to understand a new technological or industrial problem in different areas of applied physics or high tech engineering.

3.1 Document and summarize the existing body of knowledge.

3.2 Suggest a model and/or an experimental device allowing for the simulation and testing of hypotheses related to the phenomenon being studied.

3.3. Write a summary report explaining the potentialities of the theoretical and/or technical innovation resulting from the research project.

4.Contribute as part of a team to the planning and completion of a project while taking into account its objectives, allocated resources, and constraints.

4.1 Frame and explain the project's objectives (in terms of performance indicators) while taking into account its issues and constraints (resources, budget, deadlines).

4.2 Collaborate on a work schedule, deadlines and roles, for example the division of labour among students.

4.3 Work in a multidisciplinary environment with peers holding different points of view; manage any resulting disagreement or conflicts.

4.4 Make team decisions (wheTm [amental tools and (in terms of T7ution.k in 30249 Tmo1 00snd 0 -1 articul349 Tm [.hcmentalnol236300659 Tm7 0 0 -

Year

PROFESSIONAL FOCUS [30.0]

• Mandatory
🗱 Optional
Δ Not offered in 2024-2025
Not offered in 2024-2025 but offered the following year
Offered in 2024-2025 but not the following year
$\Delta \oplus$ Not offered in 2024-2025 or the following year
Activity with requisites
Open to incoming exchange students
Mot open to incoming exchange students
[FR] Teaching language (FR, EN, ES, NL, DE,)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

ONS

Dans la rubrique "Options du master ingénieur civil physicien", l'étudiant e doit valider au moins une des options proposées. Dans la rubrique "Options et cours au choix en connaissances socioéconomiques", l'étudiant e valide une des deux options ou choisit obligatoirement au minimum 3 crédits parmi les cours au choix ou les cours de l'option en enjeux de l'entreprise.

 Majors for the Master's degree in physics
 [en-prog-2024-fyap2m-lfyap2210]

 > Major in nanotechnology
 [en-prog-2024-fyap2m-lfyap2250]

 > Major advanced electronic materials and devices
 [en-prog-2024-fyap2m-lfyap2230]

 Options et cours au choix en connaissances socio-économiques

 > Business risks and opportunities
 [en-prog-2024-fyap2m-lfyap2300]

 > Major in Interdisciplinary Program in Entrepreneurship - INEO
 [en-prog-2024-fyap2m-lfyap200]

 Others elective courses
 [en-prog-2024-fyap2m-lfyap9520]

MAJORS FOR THE MASTER'S DEGREE IN PHYSICS

MAJOR IN ADVANCED ENGINEERING PHYSICS

- O Mandatory
- 🗱 Optional
- Δ Not offered in 2024-2025
- \oslash Not offered in 2024-2025 but offered the following year
- \oplus Offered in 2024-2025 but not the following year
- $\Delta \oplus \operatorname{Not}$ offered in 2024-2025 or the following year
- Activity with requisites
- Open to incoming exchange students
- Mot open to incoming exchange students
- FR] Teaching language (FR, EN, ES, NL, DE, ...)

Click on the course title to see detailed informations (objectives, methods, evaluation...)

From 20 to 30credit(s)

o Content:

⇔ Optics and photonics

🔀 LPHYS2141	Introduction to quantum optics	Matthieu Génévriez Xavier Urbain	(1) [q1] [22.5h+7.5h] [5 Credits] (1) > French-friendly	х)	(
🔀 LPHYS2246	Experimental methods in atomic and molecular physics		DN [q2] [30h] [5 Credits] > French-friendly	х	:)	<

Section 2018 Experimental methods

Year 1 2

I.

🔀 LMAPR2483	Durability of materials	Laurent Delannay Thomas Pardoen	[q2] [30h+22.5h] [5 Credits] 🛞 > French-friendly

MAJOR IN NANOTECHNOLOGY

MAJOR ADVANCED ELECTRONIC MATERIALS AND DEVICES

O Mandatory ☎ OPTIONS ET COURS AU CHOIX EN CONNAISSANCES SOCIO-ÉCONOMIQUES [3.0]

BUSINESS RISKS AND OPPORTUNITIES

- O Mandatory
- St Optional
- Δ Not offered in 2024-2025
- $\ensuremath{\oslash}$ Not offered in 2024-2025 but offered the following year
- \oplus Offered in 2024-2025 but not the following year
- $\Delta \oplus \mathsf{Not}$ offered in 2024-2025 or the following year
- Activity with requisites

Course prerequisites

There are no prerequisites between course units (CUs) for this programme, i.e. the programme activity (course unit, CU) whose learning outcomes are to be certified and the corresponding credits awarded by the jury before registration in another CU.

The programme's courses and learning outcomes

For each UCLouvain training programme, a reference framework of learning outcomes specifies the the skills expected of every graduate on completion of the programme. Course unit descriptions specify targeted learning outcomes, as well as the unit's contribution to reference framework of learning outcomes.

UCL - Université catholique de Louvain Study Programme 2024-2025

			degree may have an adapted master programme.
Bachelor in Engineering	For others institutions	Access based on application	See personalized access

Non university Bachelors

> Find out more about links to the university

Holders of a 2nd cycle University degree

Diploma	Special Requirements	Access	Remarks		
"Licenciés"					
Masters					

Master in engineering

Direct access

Holders of a non-University 2nd cycle degree

Access based on validation of professional experience

It is possible, under certain conditions, to use one's personal and professional experience to enter a university course without having the required qualifications. However, validation of prior experience does not automatically apply to all courses. Find out more about Validation of priori experience.

Access based on application

Access based on application : access may be granted either directly or on the condition of completing additional courses of a maximum of 60 ECTS credits, or refused.

The first step of the admission procedure requires to submit an application online: https://uclouvain.be/en/study/inscriptions/futurs-etudiants.html

Selection criteria are summarized here (contact :

Teaching method

Methods that promote multidisciplinary studies

The Master's degree programme in physical engineering is interdisciplinary because acts as an interface between physics and materials science. Its versatile foundation exposes students to the wide scope of applied physics from practical training and cutting edge research to majors in the main branches of physics and materials science: nano-technologies, materials science, photovoltaics, fundamental and applied physics and light-matter interaction. Students also have the possibility of studying management thanks to majors in management and small and medium sized business creation. The programme includes a significant portion of the classes with the PHYS (or PHY) designation as well as MATH, INMA and MECA classes, which is evidence of the programme's multidisciplinary nature. Finally students are allowed to select up to 40 credits of elective courses offered as part of the programmes in natural sciences or medicine at UCLouvain and up to 6 credits of courses in human sciences, which allows for tailor made course schedules.

Various teaching strategies

The pedagogy used in the Master's degree programme in physical engineering is consistent with that of the Bachelor's degree programme in engineering sciences: active learning, an equal mix of group work and individual work, and emphasis on the development of non-technical skills. A major characteristic of the programme is the immersion of students in professors' research laboratories (and at times teaching laboratories, case studies, projects, theses) that expose students to advanced methods used in the discipline and allows them to learning by questioning, a process inherent in the research process. An optional 9-week internship of 10 credits (or 5 credits if completed alongside a thesis) places students at the centre of research and allows them to develop their skills through their contact with the professional world.

Diverse learning situations

Students will be exposed to varied pedagogical methods: lectures, projects, exercise tutorials, problem-solving sessions, case studies, experimental laboratories, computer simulations, internships in industry or research, graduation projects, group work, individual work, conferences given by outside researchers, exposure to cutting edge research, etc. This variety of teaching techniques allows students to learn in an iterative and progressive manner all the while developing their autonomy as well as their organisational, time management and communication skills.

Evaluation

The evaluation methods comply with the regulations concerning studies and exams. More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading "Learning outcomes evaluation method".

Evaluation methods conform to the rules used to evaluate coursework and exams. Further details about the methods specific to each academic department may be found in their respective evaluation descriptions ("Evaluating students' knowledge").

Student work is evaluated according to University rules (see the rules for evaluating coursework and exams) namely written and oral exams, laboratory exams, individual or group work, public presentations of projects and theses defences. Professors provide details about evaluation methods used in their courses at the beginning of each semester.

For more information on evaluation methods, students may consult the relevant evaluation descriptions.

To obtain a passing grade, the marks received for the teaching units are offset by their respective credits.

Mobility and/or Internationalisation outlook

Over the years, EPL has developed over a hundred partnerships with partners in more than 36 countries (EU and non-EU) to offer exchange programmes to its students. We also offer the possibility of obtaining Double degrees, Joint Degrees or Dual Masters in several fields. The EPL is currently participating in two Erasmus Mundus programmes: FAME and STRAINS.

In addition to exchange programmes under the Erasmus+ programme, numerous agreements have been established with a wide range of universities through various partner networks such as:

- TIME network (Top Industrial Managers in Europe).
- CLUSTER network
- Magalhães network
- Circle U. network through several networks and European University Alliance

So, there's no shortage of opportunities to gain an additional qualification and/or spend part of the year abroad during your two-year Master's degree! It's the perfect opportunity to discover or improve your knowledge of a foreign language, tackle subjects from a new angle and gain unique experience in Europe or the rest of the world.

If you would like more information, please visit the dedicated pages of the EPL International Office to discover all the destinations, testimonials from former students and all the procedures to follow to make these opportunities a success.

UCL - Université catholique de Louvain Study Programme 2024-2025 FYAP2M: Master [120] in Physical Engineering