

FYAP2M - Teaching profile

Learning outcomes

Physical engineers master the physical aspects of how objects function and their interaction with the environment (waves, light, ions, electric and magnetic fields, temperature gradients). Physical engineers have dual training in experiments and simulation. They are capable of using theories and formal representations of objects thanks to numerical simulation tools. They are also capable of carrying out laboratory-based experiments. Their comprehensive understanding of physical properties allows them to make the connection between properties on an atomic scale with those that are macroscopic.

Due to the in-depth study of different fields of physics (material physics, optics, electromagnetics, electronics, mechanics, quantum physics, etc.), the Master's degree programme in physical engineering (FYAP) prepares students for numerous jobs and specialisations in the industrial sector as well as participation in research-based technological activities.

Physical engineers are called on to resolve technological problems that are often complex and multidisciplinary in nature, linked to the design and creation of materials, devices and systems. They can act as an interface between different professions that use functional materials. They are called on to innovate in a specific technological environment.

Physical engineers systematically take into account constraints, values, rules (both legal and ethical) and economics. Their solid scientific background allows them to be autonomous enough to manage complex industrial projects. They are comfortable working as part of a team and communicating effectively even in English.

On successful completion of this programme, each student is able to :

1.Demonstrating their mastery of a solid body of knowledge in basic engineering sciences allowing them to understand and solve problems related to technological and industrial applications in the physical sciences.

1.1 Identify and use concepts, laws, and appropriate reasoning to solve a given problem (for example, identifying laws and materials to go from LED to white light; designing energy convertors based on thermoelectric elements; creating materials and devices to store and/ or transfer information; designing photovoltaic panels with optimal output.)

1.2 Identify and use appropriate modelling and calculation tools to solve problems.

1.3 Verify solutions to a given problem.

2.Organise and carry out an engineering process in a high-tech field that requires the use of fundamental tools and concepts in order to solve a particular problem.

2.1 Analyse a problem and formulate a specifications note.

2.2. Model the problem and design one or more original technical solutions in response to the specifications note (for example, the optimisation and/or combination of materials for thermal insulation), develop measures for electrical and thermal classification of a given material, choose materials for light emission (LEDs) or the creation of photovoltaic panels.

2.3 Evaluate and classify solutions in terms of all the figures in specifications notes: efficiency, feasibility, quality, ergonomics, and security in the professional environment.

2.4 Implement and test a solution through a mock-up or a prototype and/or a numerical model.

2.5 Make recommendations to improve the operational character of a solution under consideration.

3.Organise and carry out a research project to understand a new technological or industrial problem in different areas of applied physics or high tech engineering.

3.1 Document and summarize the existing body of knowledge.

3.2 Suggest a model and/or an experimental device allowing for the simulation and testing of hypotheses related to the phenomenon being studied.

3.3. Write a summary report explaining the potentialities of the theoretical and/or technical innovation resulting from the research project.

4. Contribute as part of a team to the planning and completion of a project while taking into account its objectives, allocated resources, and constraints.

4.1 Frame and explain the project's objectives (in terms of performance indicators) while taking into account its issues and constraints (resources, budget, deadlines).

4.2 Collaborate on a work schedule, deadlines and roles, for example the division of labour among students.

4.3 Work in a multidisciplinary environment with peers holding different points of view; manage any resulting disagreement or conflicts. 4.4 Make team decisions (whether they be about technical solutions or the division of labour).

5.Communicate effectively (speaking or writing in French or a foreign language) with the goal of carrying out assigned projects.

5.1 Identify the needs of the client or the user: question, listen and understand all aspects of their request and not just the technical aspects (for example, select the best-suited equipment for the material concerned, select the best material according to the desired functionalities and systems integration).

5.2 Present your arguments and convince your interlocutors (technicians, colleagues, clients, superiors) of your technological choices by adopting their language.

5.3 Communicate through graphics and diagrams: interpret a diagram, present results, structure information.

5.4 Read and analyse different technical documents, plans, specification notes: progress of physical properties in function of materials, temperature, mechanical limits or external fields, phase diagrams, band structures, etc.

5.5 Draft documents that take into account contextual requirements and social conventions.

5.6 Make a convincing oral presentation using modern communication techniques.

6.Demonstrate rigor, openness and critical and ethical awareness in your work: using the technological and scientific innovations at your disposal validate the socio-technical relevance of a hypothesis or a solution.

6.1 Rigorously apply the field's standards (terms, units of measure, quality standards and security).

Year

UCL - Université catholique de Louvain Study Programme 2024-2025

I.

🔀 LMAPR2483	Durability of materials	Laurent Delannay Thomas Pardoen	[q2] [30h+22.5h] [5 Credits] 🛞 > French-friendly

MAJOR IN NANOTECHNOLOGY

UCL - Université catholique de Louvain

Isabelle				Yea <mark>1</mark> 2	r
S LNEER2500	Seminar of Entry to professional life in Dutch - Intermediate level	Isabelle Demeulenaere (coord.)	NL [q1 or q2] [30h] [3 Credits]	хх	
S LNEER2600					

Course prerequisites

There are no prerequisites between course units (CUs) for this programme, i.e. the programme activity (course unit, CU) whose learning outcomes are to be certified and the corresponding credits awarded by the jury before registration in another CU.

The programme's courses and learning outcomes

For each UCLouvain training programme, a reference framework of learning outcomes specifies the the skills expected of every graduate on completion of the programme. Course unit descriptions specify targeted learning outcomes, as well as the unit's contribution to reference framework of learning outcomes.

FYAP2M - Information

Access Requirements

Master course admission requirements are defined by the French Community of Belgium Decree of 7 November 2013 defining the higher education landscape and the academic organisation of courses.

General and specific admission requirements for this programme must be satisfied at the time of enrolling at the university.

Unless explicitly mentioned, the bachelor's, master's and licentiate degrees listed in this table or on this page are to be understood as those issued by an institution of the French, Flemish or German-speaking Community, or by the Royal Military Academy.

In the event of the divergence between the different linguistic versions of the present conditions, the French version shall prevail.

SUMMARY

- > General access requirements
- Specific access requirements
- > University Bachelors
- > Non university Bachelors
- > Holders of a 2nd cycle University degree
- > Holders of a non-University 2nd cycle degree
- > Access based on validation of professional experience
- > Access based on application
- > Admission and Enrolment Procedures for general registration

Specific access requirements

This programme is taught in English with no prerequisite in French. A certificate is required for the holders of a non-Belgian degree, see selection criteria of the Access on the file.

University Bachelors

Diploma	Special Requirements	Access	Remarks	
UCLouvain Bachelors				
Bachelor in Engineering		Direct access	Students who have neither major nor minor in the field of their civil engineering Master's degree may have an adapted programme.	
Others Bachelors of the French	n speaking Community of Belgiu	ım		
Bachelor in Engineering		Direct access	Students with a Bachelor's degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil enginering master degree may have an adapted master programme.	
Bachelors of the Dutch speaking	ng Community of Belgium			
Bachelor in engineering		Access with additional training	Students who have no specialisation in the field of their civil enginering master degree may have an adapted master programme with up to 60 additional credits.	
Foreign Bachelors				
Bachelor in engineering	Bachelors degree of Cluster Institution	Direct access	Students with a Bachelor's degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil enginering master	

			degree may have an adapted master programme.
Bachelor in Engineering	For others institutions	Access based on application	See personalized access

Non university Bachelors

> Find out more about links to the university

Teaching method

Methods that promote multidisciplinary studies

The Master's degree programme in physical engineering is interdisciplinary because acts as an interface between physics and materials science. Its versatile foundation exposes students to the wide scope of applied physics from practical training and cutting edge research to majors in the main branches of physics and materials science: nano-technologies, materials science, photovoltaics, fundamental and applied physics and light-matter interaction. Students also have the possibility of studying management thanks to majors in management and small and medium sized business creation. The programme includes a significant portion of the classes with the PHYS (or PHY) designation as well as MATH, INMA and MECA classes, which is evidence of the programme's multidisciplinary nature. Finally students are allowed to select up to 40 credits of elective courses offered as part of the programmes in natural sciences or medicine at UCLouvain and up to 6 credits of courses in human sciences, which allows for tailor made course schedules.

Various teaching strategies

The pedagogy used in the Master's degree programme in physical engineering is consistent with that of the Bachelor's degree programme in engineering sciences: active learning, an equal mix of group work and individual work, and emphasis on the development of non-technical skills. A major characteristic of the programme is the immersion of students in professors' research laboratories (and at times teaching laboratories, case studies, projects, theses) that expose students to advanced methods used in the discipline and allows them to learning by questioning, a process inherent in the research process. An optional 9-week internship of 10 credits (or 5 credits if completed alongside a thesis) places students at the centre of research and allows them to develop their skills through their contact with the professional world.

Diverse learning situations

Students will be exposed to varied pedagogical methods: lectures, projects, exercise tutorials, problem-solving sessions, case studies, experimental laboratories, computer simulations, internships in industry or research, graduation projects, group work, individual work, conferences given by outside researchers, exposure to cutting edge research, etc. This variety of teaching techniques allows students to learn in an iterative and progressive manner all the while developing their autonomy as well as their organisational, time management and communication skills.

Evaluation

The evaluation methods comply with the regulations concerning studies and exams. More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading "Learning outcomes evaluation method".

Evaluation methods conform to the rules used to evaluate coursework and exams. Further details about the methods specific to each academic department may be found in their respective evaluation descriptions ("Evaluating students' knowledge").

Student work is evaluated according to University rules (see the rules for evaluating coursework and exams) namely written and oral exams, laboratory exams, individual or group work, public presentations of projects and theses defences. Professors provide details about evaluation methods used in their courses at the beginning of each semester.

For more information on evaluation methods, students may consult the relevant evaluation descriptions.

To obtain a passing grade, the marks received for the teaching units are offset by their respective credits.

Mobility and/or Internationalisation outlook

Over the years, EPL has developed over a hundred partnerships with partners in more than 36 countries (EU and non-EU) to offer exchange programmes to its students. We also offer the possibility of obtaining Double degrees, Joint Degrees or Dual Masters in several fields. The EPL is currently participating in two Erasmus Mundus programmes: FAME and STRAINS.

In addition to exchange programmes under the Erasmus+ programme, numerous agreements have been established with a wide range of universities through various partner networks such as:

- TIME network (Top Industrial Managers in Europe).
- CLUSTER network
- Magalhães network
- Circle U. network through several networks and European University Alliance

So, there's no shortage of opportunities to gain an additional qualification and/or spend part of the year abroad during your two-year Master's degree! It's the perfect opportunity to discover or improve your knowledge of a foreign language, tackle subjects from a new angle and gain unique experience in Europe or the rest of the world.

If you would like more information, please visit the dedicated pages of the EPL International Office to discover all the destinations, testimonials from former students and all the procedures to follow to make these opportunities a success.

Possible trainings at the end of the programme

Master's degree programmes

The Advanced Master in Nanotechnologies and the Advanced Master in Nuclear Engineering of the M.A. in physical engineering.

Doctoral degree programmes

The Master's degree programme in physical engineering prepares students for doctoral programmes. The programme's professors are members of the MAIN ("Materials, Interfaces and Nanotechnology) doctoral programme and interested students are welcome to pursue a doctoral degree.

UCLouvain Master's degrees (about 60) are accessible to UCLouvain Master's degree holders

For example:

- Different Master's degree programmes in management (automatic admission based on written application).
- The Master [60] in Information and Communication at Louvain-la-Neuve or the Master [60] in Information and Communication at Mons

Contacts

Curriculum Management

Entity

Structure entity Denomination Faculty Sector Acronym Postal address SST/EPL/FYKI (FYKI) Louvain School of Engineering (EPL) Sciences and Technology (SST) FYKI Place Sainte Barbe 2 - bte L5.02.02 1348 Louvain-la-Neuve Tel: +32 (0) 10 47 24 87 - Fax: +32 (0) 10 47 40 28

Academic supervisor: Pascal Jacques Jury

• Président du Jury: Claude Oestges

Secrétaire du Jury: Pascal Jacques

Useful Contact(s)

• Tel: 010/47.96.23: Vinciane Gandibleux