MATH
Chemin du Cyclotron 2/L7.01.02
1348 Louvain-la-Neuve
Jean Van Schaftingen
Professeur ordinaire
- پô
Բé Label Institution 2002 Ingénieur civil en mathématiques appliquées Сư洫ý 2003 Diplôme d'éٳܻ approfondies interuniversitaire en mathématiques Сư洫ý 2005 Docteur en sciences Сư洫ý
- Les cours
Nom ID Compléments d'analyse LINMA1315 Calcul numérique : méthodes et outils logiciels LMAT1151 Introduction à la démarche mathématique LMAT1191 Analyse fonctionnelle et équations aux dérivées partielles LMAT1321 Séminaire de formation au métier de chercheur en mathématique LMAT2160 Histoire et épistémologie des mathématiques LMAT2170 Analyse harmonique avancée LMAT2415
Bulanyi, Bohdan ; Van Schaftingen, Jean. Singular extension of critical Sobolev mappings under an exponential weak-type estimate. In: Journal of Functional Analysis, Vol. 288, no.1, p. 110681 (2025). doi:10.1016/j.jfa.2024.110681.
Gmeineder, Franz ; Raiţă, Bogdan ; Van Schaftingen, Jean. Boundary ellipticity and limiting L1-estimates on halfspaces. In: Advances in Mathematics, Vol. 439, no., p. 109490 (2024). doi:10.1016/j.aim.2024.109490.
Brezis, Haïm ; Seeger, Andreas ; Van Schaftingen, Jean ; Yung, Po-Lam. Families of functionals representing Sobolev norms. In: Analysis & P D E, Vol. 17, no.3, p. 943-979 (2024). doi:10.2140/apde.2024.17.943.
Van Schaftingen, Jean ; Van Vaerenbergh, Benoît. Asymptotic behavior of minimizing p-harmonic maps when p↗2 in dimension 2. In: Calculus of Variations and Partial Differential Equations, Vol. 62, no.8, p. 229 (2023). doi:10.1007/s00526-023-02568-6.
Van Schaftingen, Jean. Fractional Gagliardo–Nirenberg interpolation inequality and bounded mean oscillation. In: Comptes Rendus. Mathématique, Vol. 361, no.G6, p. 1041-1049 (2023). doi:10.5802/crmath.463.
Mazowiecka, Katarzyna Ewa ; Van Schaftingen, Jean. Quantitative characterization of traces of Sobolev maps. In: Communications in Contemporary Mathematics, Vol. 25, no. 02, p. 2250003 (2023). doi:10.1142/s0219199722500031.
Domínguez, Óscar ; Seeger, Andreas ; Street, Brian ; Van Schaftingen, Jean ; Yung, Po-Lam. Spaces of Besov-Sobolev type and a problem on nonlinear approximation. In: Journal of Functional Analysis, Vol. 284, no.4, p. 109775 (2023). doi:10.1016/j.jfa.2022.109775.
Van Schaftingen, Jean ; Yung, Po-Lam. Limiting Sobolev and Hardy inequalities on stratified homogeneous groups. In: Annales Fennici Mathematici, Vol. 47, no.2, p. 1065-1098 (2022). doi:10.54330/afm.120959.
Monteil, Antonin ; Rodiac, Rémy ; Van Schaftingen, Jean. Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains. In: Mathematische Annalen, Vol. 383, p. 1061–1125 (2022). doi:10.1007/s00208-021-02204-8.
Van Schaftingen, Jean. Reverse superposition estimates in Sobolev spaces. In: Pure and Applied Functional Analysis, Vol. 7, no.2, p. 805-811 (2022).
Brezis, Haïm ; Seeger, Andreas ; Van Schaftingen, Jean ; Yung, Po-Lam. Sobolev spaces revisited. In: Rendiconti Lincei - Matematica e Applicazioni, Vol. 33, no.2, p. 413-437 (2022). doi:10.4171/rlm/976.
Brezis, Haïm ; Van Schaftingen, Jean ; Yung, Po-Lam. A surprising formula for Sobolev norms. In: Proceedings of the National Academy of Sciences, Vol. 118, no.8, p. e2025254118 (2021). doi:10.1073/pnas.2025254118.
Monteil, Antonin ; Rodiac, Rémy ; Van Schaftingen, Jean. Ginzburg–Landau Relaxation for Harmonic Maps on Planar Domains into a General Compact Vacuum Manifold. In: Archive for Rational Mechanics and Analysis, Vol. 242, no.2, p. 875-935 (2021). doi:10.1007/s00205-021-01695-8.
Brezis, Haïm ; Van Schaftingen, Jean ; Yung, Po-Lam. Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail. In: Calculus of Variations and Partial Differential Equations, Vol. 60, no.4, p. 129 (2021). doi:10.1007/s00526-021-02001-w.
Mironescu, Petru ; Van Schaftingen, Jean. Lifting in compact covering spaces for fractional Sobolev mappings. In: Analysis & PDE, Vol. 14, no.6, p. 1851-1871 (2021). doi:10.2140/apde.2021.14.1851.
Rodiac, Rémy ; Van Schaftingen, Jean. Metric characterization of the sum of fractional Sobolev spaces. In: Studia Mathematica, Vol. 258, no.1, p. 27-51 (2021). doi:10.4064/sm190408-21-4.
Gmeineder, Franz ; Raita, Bogdan ; Van Schaftingen, Jean. On limiting trace inequalities for vectorial differential operators. In: Indiana University Mathematics Journal, Vol. 70, no.5, p. 2133-2176 (2021). doi:10.1512/iumj.2021.70.8682.
Mironescu, Petru ; Van Schaftingen, Jean. Trace theory for Sobolev mappings into a manifold. In: Annales de la Faculté des sciences de Toulouse : Mathématiques, Vol. 30, no. 2, p. 281-299 (2021). doi:10.5802/afst.1675.
Schikorra, Armin ; Van Schaftingen, Jean. An estimate of the Hopf degree of fractional Sobolev mappings. In: Proceedings of the American Mathematical Society, Vol. 148, no.7, p. 2877-2891 (2020). doi:10.1090/proc/15026.
Nguyen, Hoai-Minh ; Van Schaftingen, Jean. Characterization of the traces on the boundary of functions in magnetic Sobolev spaces. In: Advances in Mathematics, Vol. 371, p. 107246 (2020). doi:10.1016/j.aim.2020.107246.
Chanillo, Sagun ; Van Schaftingen, Jean. Estimates of the amplitude of holonomies by the curvature of a connection on a bundle. In: Pure and Applied Functional Analysis, Vol. 5, no.4, p. 891-897 (2020).
Cassani, Daniele ; Van Schaftingen, Jean ; Zhang, Jianjun. Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent. In: Proceedings / The Royal Society of Edinburgh. Section A, Mathematics, Vol. 150, no. 3, p. 1377–1400. (2020). doi:10.1017/prm.2018.135.
Dekeyser, Justin ; Van Schaftingen, Jean. Range convergence monotonicity for vector measures and range monotonicity of the mass. In: Ricerche di Matematica, Vol. 69, no. 1, p. 293-326 (2020). doi:10.1007/s11587-019-00463-x.
Dekeyser, Justin ; Van Schaftingen, Jean. Vortex Motion for the Lake Equations. In: Communications in Mathematical Physics, Vol. 375, no.2, p. 1459-1501 (2020). doi:10.1007/s00220-020-03742-z.
Van Schaftingen, Jean. Estimates by gap potentials of free homotopy decompositions of critical Sobolev maps. In: Advances in Nonlinear Analysis, Vol. 9, no.1, p. 1214-1250 (2019). doi:10.1515/anona-2020-0047.
Convent, Alexandra ; Van Schaftingen, Jean. Higher order intrinsic weak differentiability and Sobolev spaces between manifolds. In: Advances in Calculus of Variations, Vol. 12, no. 3, p. 303–332 (2019). doi:10.1515/acv-2017-0008.
Spector, Daniel ; Van Schaftingen, Jean. Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo’s lemma. In: Rendiconti Lincei - Matematica e Applicazioni, Vol. 30, no.3, p. 413-436 (2019). doi:10.4171/rlm/854.
Bonheure, Denis ; Nys, Manon ; Van Schaftingen, Jean. Properties of ground states of nonlinear Schrödinger equations under a weak constant magnetic field. In: Journal de Mathématiques Pures et Appliquées, Vol. 124, no. 1, p. 123-168 (2019). doi:10.1016/j.matpur.2018.05.007.
Monteil, Antonin ; Van Schaftingen, Jean. Uniform boundedness principles for Sobolev maps into manifolds. In: Annales de l'Institut Henri Poincaré - C - Non Linear Analysis, Vol. 36, no.2, p. 417-449 (2019). doi:10.1016/j.anihpc.2018.06.002.
Van Schaftingen, Jean. Endpoint Sobolev Inequalities for Vector Fields and Cancelling Operators (Trends in Mathematics; 3), Birkhäuser: Cham, 2024. 978-3-031-48579-4. 10 p. doi:10.1007/978-3-031-48579-4_5.
Van Schaftingen, Jean. Injective Ellipticity, Cancelling Operators, and Endpoint Gagliardo-Nirenberg-Sobolev Inequalities for Vector Fields. In: Andrea Cianchi, Vladimir G. Maz'ya, Tobias Weth, Geometric and Analytic Aspects of Functional Variational Principles (Lecture Notes in Mathematics; 2348), Springer: Cham, 2024, p. 259-317. 9783031676000. doi:10.1007/978-3-031-67601-7_5.
Van Schaftingen, Jean. Limiting Sobolev estimates for vector fields and cancelling differential operators. In: Jaroslav Lukeš, Zdeněk Mihula, Luboš Pick et Hana Turčinoá, Function spaces and applications XII (Pazeky nad Jizerou 2023), MatfyzPress: Prague, 2023, p. 135-152. 978-80-7378-485-0. doi:https://doi.org/10.48550/arXiv.2304.14112.
Chemin, Alexandre ; Henrotte, François ; Remacle, Jean-François ; Van Schaftingen, Jean. Representing Three-Dimensional Cross Fields Using Fourth Order Tensors. In: Roca, Xevi; Loseille, Adrien (Ed.), 27th International Meshing Roundtable, Springer, Cham: Switzerland AG, 2019. 978-3-030-13991-9. doi:10.1007/978-3-030-13992-6_6.