Сư洫ý

Mathématique - analyse

lbarc1144  2024-2025  Bruxelles Saint-Gilles

Mathématique - analyse
3.00 crédits
15.0 h + 30.0 h
Q2
Enseignants
Langue
d'enseignement
ç
Thèmes abordés
Cet enseignement vise à faire acquérir les méthodes mathématiques utilisées dans les autres disciplines scientifiques. Il s'agit d'une part de comprendre les concepts de base nécessaires à la modélisation des sciences, mais aussi d'acquérir une certaine habileté dans l'application des techniques de calcul.
Cette formation doit aussi développer les aptitudes à la généralisation, au raisonnement, à la rigueur, et mener à une bonne compréhension du monde réel notamment par la perception des objets géométriques dans l'espace.
Pour ce faire, seront abordées :
  • les fonctions à une variable
  • les limites et continuité
  • les dérivées et optimisation
  • les intégrales simples et calcul de surfaces/moments
  • les équations différentielles ordinaires.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 AA spécifiques :
A la fin de l'activité l'étudiant·e sera capable
  • d'identifier les propriétés essentielles des fonctions à partir de leur représentation graphique.
  • de construire des courbes dans le plan coordonné qui satisfassent à des conditions générales d'orientation et des conditions ponctuelles de rencontre, de parallélisme et/ou de perpendicularité en exploitant les notions élémentaires de fonction, de limite et de dérivée ou les techniques de résolution des équations différentielles ordinaires d'ordre un séparables et/ou linéaires.
  • d'optimiser des longueurs, surfaces ou volumes définis dans le cadre de problèmes géométriques bi- ou tri-dimensionnels en exploitant les notions élémentaires de fonction, de limite et de dérivée.
  • de calculer une surface, un volume ou un centre de masse délimités par des courbes élémentaires dans le plan. 
Contribution au référentiel AA :
Eu égard au référentiel AA du programme BAC, cette activité contribue au
développement et à l’acquisition des AA suivants :
- AA1.1 Identifier les paramètres et les enjeux d’une situation donnée.
- AA2.1 Connaître et appliquer avec maîtrise les conventions de la
représentation en deux et en trois dimensions.
- AA3.1 Connaître et expliquer les principes physiques et physiologiques liés à
’a󾱳ٱ𳦳ٳܰ.
- AA4.1 Connaître et expliquer les concepts et les méthodes de disciplines
scientifiques.
- AA4.3 Connaître et appliquer les contenus de disciplines artistiques ou
scientifiques en vue de nourrir le projet d’architecture.
- AA6.1 Connaître les méthodes disciplinaires, interdisciplinaires ou
transdisciplinaires de la recherche scientifique.
 
Contenu
L'objectif est de donner aux étudiants une formation visant à la maîtrise des principaux outils de base en analyse, dont l'utilisation sera illustrée par des problèmes précis rencontrés dans le domaine des sciences et techniques.
Principaux points abordés
  • Fonctions d'une variable réelle (définitions, propriétés, opérations, fonctions élémentaires)
  • Limites et continuité (limite en un point, continuité, limites infinie et à l'infini, asymptotes)
  • Dérivées (définitions, calcul, applications)
  • Primitives et intégrales (définitions, calcul, applications)
  • Equations différentielles
Méthodes d'enseignement
Le cours est donné sous forme
  • d'exposés magistraux : l'enseignant y définit les concepts, démontre les résultats, et les illustre à l'aide d' applications;
  • de séances d'exercices : l'enseignant y soumet des applications/problèmes aux étudiants et propose une démarche de résolution.
Une approche basée sur la justification et l'établissement de résultats en supposant satisfaites les conditions rencontrées le plus souvent en pratique sera privilégiée par rapport à des démonstrations purement formelles.
Des exercices de routine, visant à acquérir une certaine habileté dans l'application des outils de calcul, ainsi que des exercices demandant plus de réflexion seront abordés lors des séances d'exercices.
Modes d'évaluation
des acquis des étudiants
L'évaluation se fait sous la forme d'un examen écrit. Cet examen couvrira l'ensemble de la matière. On cherchera à vérifier l'assimilation des concepts de base (théorie), des méthodes de calculs (exercices de routine) ainsi que la capacité de raisonnement (exercices de réflexion).
Toutefois, pendant le quadrimestre, un test dispensatoire sera également organisé sous la forme d'un examen écrit. Ce test dispensatoire est réservé aux primo-inscrits, c'est-à-dire les nouveaux étudiants qui ne sont inscrits qu'à des unités du bloc 1, ainsi qu’aux étudiants qui ont acquis moins de 30 crédits du bloc 1 lors de l’année académique 2023-2024, et qui ne sont dès lors pas non plus inscrits à des unités du bloc 2.   Les autres étudiants ne sont pas autorisés à présenter le test dispensatoire et présenteront l’examen lors de la session de fin de Q2.
Pour pouvoir présenter le test dispensatoire, il est indispensable d'avoir suivi et participé activement à toutes les séances d'exercices, les présences seront prises à chaque séance.
L'étudiant qui a été présent à toutes les séances d’exercices et qui a réussi le test dispensatoire pourra être dispensé d’une partie de la matière pour l'examen de fin de Q2.
L'étudiant qui n’a pas rempli les conditions pour pouvoir participer au test dispensatoire ou celui qui ne l’a pas réussi présentera l'examen de la session de fin de Q2 qui couvrira l'ensemble de la matière.
L'examen de fin de Q3 est écrit et couvrira l'ensemble de la matière pour tous les étudiants. Il n'y sera pas tenu compte du test dispensatoire.
Ressources
en ligne
Site Moodle du cours LBARC1144
Auto-Math : https://www.auto-math.be/
Bibliographie
  • Syllabus : Mathématique-Analyse
Support de cours
  • Syllabus : Mathématique-Analyse
Faculté ou entité
en charge


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
é徱ٲ
ʰéܾ
Acquis
d'apprentissage
Bachelier en architecture/BXL