Сư³æ´«Ã½

Physiologie cellulaire

wmds1210  2024-2025  Bruxelles Woluwe

Physiologie cellulaire
6.00 crédits
55.0 h + 10.0 h
Q1
Enseignants
Langue
d'enseignement
¹ó°ù²¹²Ôç²¹¾±²õ
±Ê°ùé²¹±ô²¹²ú±ô±ð²õ
L'enseignement est essentiellement orienté dans une perspective physique et physico-chimique: les connaissances acquises en 1ère année sont donc fondamentales.

Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
  1. Flux de matière
1a. Bases thermodynamiques
1b. Transport de molécules neutres
1c. Mouvements d'eau
1d. Diffusion d'électrolytes
1e. Transports assistés
1f. Canaux ioniques
1g. Transports actifs
1h. Transports transépithéliaux
  1. Flux d'informations
2a. Communication intercellulaire
2b. Propriétés électriques des cellules
2c. Potentiel de membrane au repos
2d. Potentiel d'action
2e. L'excitabilité
2f. Les récepteurs sensoriels
2g. Conduction de l'influx nerveux
2h. Bases de la transmission du message nerveux
2i. Physiologie de la synapse
2j. Principaux systèmes synaptiques
  1. Flux d'énergie
3a. La contraction musculaire
  • Composants de l'appareil contractile
  • Reconstitution du mouvement élémentaire
  • Contraction des muscles striés
  • Couplage excitation-contraction
  • Energétique de la contraction
  • Physiologie des muscles lisses
3b. Le métabolisme énergétique
  • La calorimétrie
  • Le métabolisme énergétique
  • Les échanges alimentaires
3c. Régulations
  • Principes des systèmes de contrôle
  • Régulation de la température corporelle
  • Homéostasie du calcium intracellulaire
  • Régulation du volume cellulaire
  • Régulation du pH intracellulaire
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 Au terme de cet enseignement, l'étudiant en médecine BAC2 est capable de
- démontrer que la cellule vivante est un système ouvert dans un état stationnaire, qui consomme de l'énergie potentielle pour le maintien de structures vivantes complexes par le biais d'un réseau de flux couplés.
- utiliser correctement et pertinemment les concepts de flux et de perméabilité et est capable d'expliquer précisément la loi de Fick et les principes de l'osmoseÌý; les échanges d'eau à travers les capillaires et les bases biophysiques de la formation des 'dèmesÌý; les flux et les forces qui contrôlent les flux d'ions, l'origine du potentiel de membrane.
- décrire les propriétés de base et les paramètres de tous les canaux ioniques ainsi que les différentes familles de canaux ioniques, de différencier diffusion passive, transports facilités et transports actifs primaires et secondaires en fonction de leurs sources d'énergie, leurs mécanismes moléculaires et leur couplage énergétique, et d'expliquer le processus le transport trans-épithélial.
- expliquer les mécanismes de la transmission de l'information et, en particulier, les processus nécessaires pour maintenir le potentiel de membrane au repos, les mécanismes ioniques du potentiel d'action, les processus nécessaires à l'apparition, la propagation et la transmission de l'influx nerveux. Il est également capable de décrire les mécanismes de la transmission synaptique et les mécanismes synaptiques de la mémoire
- décrire la microstructure et la fonction du muscle strié et du muscle lisseÌý: les mécanismes de conversion d'énergie chimique en travail mécanique, le couplage excitation-contraction et les paramètres mécaniques et énergétiques de la contraction musculaire
- expliquer le métabolisme énergétique, sa mesure et sa régulation. Il est capable d'expliquer et d'utiliser la notion de puissance métabolique et le concept de bilan énergétique. Il est capable d'expliquer le contrôle de la température corporelle et fait la différence entre hypothermie, hyperthermie et fièvre
A travers ces situations, l'étudiant montre sa capacité à
  • décrire un processus biologique en termes physiques
  • intégrer des données physiologiques cellulaires avec les acquis d'autres cours tels que la biochimie et la biologie cellulaire
- faire preuve de rigueur dans l'observation d'un phénomène biologique, dans la description et la quantification des résultats d'une expérience
- faire preuve de logique dans l'interprétation des résultats d'une expérience
 
Contenu
L'enseignement est essentiellement orienté dans une perspective physique et physico-chimique: les connaissances acquises en 1è année sont donc fondamentales. Par ailleurs, la physiologie est une science expérimentale: c'est de la description d'observations que sont déduites les théories expliquant les fonctions cellulaires de base. Enfin, un accent particulier sera mis les bases cellulaires de certaines maladies.
Les TD se font en auditoires et consistent en exercices et démonstrations.ÌýLeur butÌýest d'illustrer et expliciter les concepts théoriques. Des TP virtuels peuvent également être proposés.ÌýIls permettent aussi d'initier les étudiants à la démarche expérimentale et la description adéquate et précise de résultats obtenus avec des méthodes simples et une analyse critique des observations.Ìý
Méthodes d'enseignement
L’activité d’enseignement consiste en un cours magistral (55h) donné en présentiel et/ou en distanciel où les différents contenus sont expliqués par l'enseignantÌýtitulaireÌýdu cours. ÌýDes exercices et des démonstrations sont réalisées en auditoire (TD 10h).


Modes d'évaluation
des acquis des étudiants
L’étudiant démontrera ses acquis d’apprentissage lors d’un examen écritÌý: QROC et/ou QCM.
Quand des QCM sont présentés, une ou plusieurs réponses sont proposées. L'étudiant doit avoir toutes les bonnes réponses pour obtenir le point. Aucun point négatif n'est comptabilisé.Ìý
Quand des QROC sont proposés, l'étudiant doit répondre de façon contruite et concise dans l'espace prévu pour la réponse. Une attention particulière est demandée au soin etÌýà la précision (penser à donner les unités des valeurs utilisées etc)
Le type d’évaluation choisi lors de la 1ère session d’examen peut être soumis à modification au regard du nombre d’étudiant·es inscrit·es à la seconde session.
Bibliographie
Bibliographie de référence recommandée aux étudiants Ouvrages généraux
Purves et al. Neurosciences. De Boeck
Blaustein, Kao & Matteson : Cellular physiology. Elsevier Mosby
Sperelakis : Cell physiology. Academic Press
Boron & Boulpaep : Medical physiology. Saunders
Flux de matière
Glaser : Biophysics. Springer
Hille : Ion channels of excitable membranes. Sinauer
Schultz : Basic principles of membrane transport. Cambridge University Press
Flux d'information et d’énergie
Aidley : The physiology of excitable membranes. Cambridge University Press
Cowan, Südhof & Stevens : Synapses. Johns Hopkins
Kandel, Schwarz & Jessel : Principles of neural science. Appleton & Lange
Kayser : Physiologie. Livre deuxième : Système nerveux. Muscle. Flammarion
Meunier & Shvaloff : Neurotransmetteurs. Masson Abrégés
Tritsch, Chesnoy-Marchais & Felz : Physiologie du neurone. Doin

Ìý
Support de cours
  • Supports de cours : 3 syllabi (Moodle et/ou copies papier)
Faculté ou entité
en charge


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
°ä°ùé»å¾±³Ù²õ
±Ê°ùé°ù±ð±ç³Ü¾±²õ
Acquis
d'apprentissage
Bachelier en médecine