-
Common core [46.0]LDATI2990 Master thesisThe graduation project can be written and presented in French or English, in consultation with the supervisor. It may be accessible to exchange students by prior agreement between the supervisors and/or the two universities.LEPL2020 Professional integration workThe modules of LEPL2020 course are organized over the two annual blocks of the master's degree. It is strongly recommended that students take them from year 1, but they will only be able to register for the course at the earliest the year in which they present their final graduation project.
Students who have other professional integration activities in their personal programme, or who can demonstrate an equivalent activity could be exempted from this course. This equivalence is at the discretion of the examination board. Another activity should then be chosen to reach the number of ECTS required for their graduation.
LINFO2172 DatabasesLSTAT2120 Linear modelsOne course to choose fromLINFO2399 Industrial seminar in computer scienceLINMA2120 Applied mathematics seminarEN
q1+q2 30h 3 credits > French-friendlyTeacher(s):
> Pierre-Antoine Absil
> Gianluca Bianchin
> Frédéric Crevecoeur
> Jean-Charles Delvenne
> François Glineur
> Julien Hendrickx
> Laurent Jacques
> Raphaël Jungers
> Estelle Massart (coord.)
> Geovani Nunes Grapiglia
Pierre-Antoine Absil
LSTAT2390 Applied statistics workshops -
List of focuses
-
Professional Focus : Data Analytics [30.0]Content:LDATA2010 Information visualisationLINMA2472 Algorithms in data science
EN
q1 30h+22.5h 5 credits > French-friendlyTeacher(s):
> Jean-Charles Delvenne (coord.)
> Benoît Legat (compensates Vincent Blondel)
LINFO2364 Mining Patterns in DataLSTAT2130 Introduction to Bayesian statisticsLINFO2275 Data mining & decision makingEN
q1 30h+30h 5 credits > French-friendlyTeacher(s):
> John Lee
> John Lee (compensates Michel Verleysen)
-
Professional Focus : Cybersecurity [30.0]Content:LELEC2760 Secure electronic circuits and systemsLELEC2770 Privacy Enhancing technology
EN
q1 30h+30h 5 credits > French-friendlyTeacher(s):
> Olivier Pereira
> François-Xavier Standaert
LINFO2347 Computer system securityLINFO2144 Secured systems engineeringLMAT2450 CryptographyLELEC2348 Information theory and codingEN
q2 30h+15h 5 credits > French-friendlyTeacher(s):
> Jérôme Louveaux
> Benoît Macq
> Olivier Pereira
-
-
Options
L'étudiant·e complète son programme pour arriver à min. 90 crédits disciplinaires (dispensés dans les Masters EPL ou sigle STAT, y compris le TFE) en ce non compris les éventuels compléments pris par certains étudiants qui manqueraient de base. Il n'est pas obligatoire de valider une option.
Dans la rubrique "Options et cours au choix en connaissances socioéconomiques", l'étudiant·e valide une des deux options ou choisit obligatoirement au minimum 3 crédits parmi les cours au choix ou les cours de l’option en enjeux de l’entreprise.-
Majors in Data Science: Information technology
-
Major in computer systemsContent:Compulsory courses :LINFO2145 Cloud ComputingElective coursesLINFO2347 Computer system securityLINFO2143 Concurrent systems : models and analysisLINFO2349 Networking and security seminarLINFO2146 Mobile and Embedded ComputingLINFO2355 Multicore programming
-
Major in numerical methods and optimisation
The student who wishes to validate this option chooses 15 credits among:
Content:Compulsory coursesLINMA2471 Optimization models and methods IIEN
q1 30h+22.5h 5 credits > French-friendlyTeacher(s):
> François Glineur
> Geovani Nunes Grapiglia
LINMA2380 Matrix computationsOne course betweenLINFO2266 Advanced Algorithms for OptimizationLINMA2450 Combinatorial optimizationEN
q1 30h+22.5h 5 credits > French-friendlyTeacher(s):
> Julien Hendrickx
> Geovani Nunes Grapiglia
Elective coursesLINMA2470 Stochastic modellingEN
q2 30h+22.5h 5 credits > French-friendlyTeacher(s):
> Philippe Chevalier
> Mehdi Madani (compensates Philippe Chevalier)
LINMA2491 Operational ResearchLINMA2875 System IdentificationLINFO2365 Constraint programmingLINMA2460 Optimization : Nonlinear programmingLINMA2120 Applied mathematics seminarEN
q1+q2 30h 3 credits > French-friendlyTeacher(s):
> Pierre-Antoine Absil
> Gianluca Bianchin
> Frédéric Crevecoeur
> Jean-Charles Delvenne
> François Glineur
> Julien Hendrickx
> Laurent Jacques
> Raphaël Jungers
> Estelle Massart (coord.)
> Geovani Nunes Grapiglia
Pierre-Antoine Absil
LINMA2360 Project in mathematical engineering -
Elective technical coursesContent:StatisticsLSTAT2200 Survey and SamplingLSTAT2380 Statistical consultingLSTAT2390 Applied statistics workshopsMachine learning, vision and artificial intelligenceLELEC2885 Image processing and computer vision
EN
q1 30h+30h 5 credits > French-friendlyTeacher(s):
> Christophe De Vleeschouwer (coord.)
> Laurent Jacques
LGBIO2010 BioinformaticsEN
q1 30h+30h 5 credits > French-friendlyTeacher(s):
> Vincent Branders (compensates Pierre Dupont)
LINFO2263 Computational LinguisticsLELEC2348 Information theory and codingEN
q2 30h+15h 5 credits > French-friendlyTeacher(s):
> Jérôme Louveaux
> Benoît Macq
> Olivier Pereira
LINFO2381 Health InformaticsData structures and algorithms for data analysisLELEC2770 Privacy Enhancing technologyEN
q1 30h+30h 5 credits > French-friendlyTeacher(s):
> Olivier Pereira
> François-Xavier Standaert
LINFO1361 Artificial intelligence
-
-
Options et cours au choix en connaissances socio-économiques
-
Business risks and opportunitiesContent:LEPL2211 Business issues introductionLEPL2212 Financial performance indicatorsLEPL2214 Law, Regulation and Legal ContextOne course between
From 3 to 5credit(s)LEPL2210 Ethics and ICTCours en marketingMGEST1108 MarketingMLSMM2136 Trends in Digital MarketingMLSMM2134 e-Consumer BehaviorCours en Sourcing and ProcurementLLSMS2036 Supply Chain ProcurementLLSMS2038 Procurement Organisation and ScopeEN
q1 30h 5 creditsTeacher(s):
> Constantin Blome
> Canan Kocabasoglu Hillmer (compensates Constantin Blome)
LLSMS2037 Sourcing StrategyAlternative to the major in business risks and opportunities for computer science studentsComputer science students who have already taken courses in this field while pursuing their Bachelor's degree may choose between 16-20 credits from the courses offered in the management minor for computer sciences.
-
Major in Interdisciplinary Program in Entrepreneurship - INEO
Commune à la plupart des masters de l'EPL, cette option a pour objectif de familiariser l'étudiant·e avec les spécificités de l'entreprenariat et de la création d’entreprise afin de développer chez lui les aptitudes, connaissances et outils nécessaires à la création d'entreprise.
Cette option rassemble des étudiants de différentes facultés en équipes interdisciplinaires afin de créer un projet entrepreneurial. La formation interdisciplinaire en entrepeneuriat (INEO) est une option qui s’étend sur 2 ans et s’intègre dans plus de 30 Masters de 9 facultés/écoles de l’UCLouvain. Le choix de l’option INEO implique la réalisation d’un mémoire interfacultaire (en équipe) portant sur un projet de création d’entreprise. L’accès à cette option, ainsi qu'à chacun des cours, est limité aux étudiant·es sélectionnés sur dossier. Toutes les informations sur /fr/etudier/ineo.
L'étudiant.e qui choisit de valider cette option doit sélectionner au minimum 20 crédits et au maximum 25 crédits. Cette option n'est pas accessible en anglais et ne peut être prise simultanément avec l'option « Enjeux de l'entreprise ».Content:Required coursesLINEO2001 Théorie de l'entrepreneuriatLINEO2003 Plan d'affaires et étapes-clefs de la création d'entrepriseLes séances du cours LINEO2003 sont réparties sur les deux blocs annuels du master. L'étudiant doit les suivre dès le bloc annuel 1, mais ne pourra inscrire le cours que dans son programme de bloc annuel 2.
Prerequisite coursesStudent who have not taken management courses during their previous studies must enroll in LINEO2021.
LINEO2021 Financer son projet -
Cours au choix en connaissances socio-économiquesContent:LFSA2995 Company InternshipLSTAT2380 Statistical consultingLSTAT2390 Applied statistics workshopsLINMA2360 Project in mathematical engineeringLINMA2120 Applied mathematics seminar
EN
q1+q2 30h 3 credits > French-friendlyTeacher(s):
> Pierre-Antoine Absil
> Gianluca Bianchin
> Frédéric Crevecoeur
> Jean-Charles Delvenne
> François Glineur
> Julien Hendrickx
> Laurent Jacques
> Raphaël Jungers
> Estelle Massart (coord.)
> Geovani Nunes Grapiglia
Pierre-Antoine Absil
LACTU2030 Life insurance actuarial scienceLLSMS2034 Supply Chain PlanningLINFO2399 Industrial seminar in computer scienceLINFO2402 Open Source Project
-
-
Others elective courses
-
Others elective coursesContent:The elective courses recommended and available for Master students in Data Science Engineering are listed here above and in the courses of EPL. However, a student can further suggest other courses that would be relevant for his.her personal curriculum, pending that this is compliant with the rules for setting up a personal Master programme.
LanguagesStudents may select from any language course offered at the ILV. Special attention is placed on the following seminars in professional development:
LALLE2500 Professional development seminar GermanDE
q1+q2 30h 3 creditsTeacher(s):
> Caroline Klein (coord.)
> Mélanie Mottin (compensates Caroline Klein)
LALLE2501 Professional development seminar-GermanDE
q1+q2 30h 5 creditsTeacher(s):
> Caroline Klein (coord.)
> Mélanie Mottin (compensates Caroline Klein)
Group dynamicsLEPL2351 Become a tutorFR
q1 15h+30h 3 creditsTeacher(s):
> Jean-Charles Delvenne (coord.)
> Delphine Ducarme
> Thomas Pardoen
> Benoît Raucent
LEPL2352 Become a tutorFR
q2 15h+30h 3 creditsTeacher(s):
> Jean-Charles Delvenne (coord.)
> Delphine Ducarme
> Thomas Pardoen
> Benoît Raucent
Autres UEs hors-EPLL'étudiant·e peut choisir maximum 8 crédits de cours hors EPL, considérés comme non-disciplinaires par la commission de programme.
-
-
-
Preparatory Module (only for students who qualify for the course via complementary coursework)
To access this Master, students must have a good command of certain subjects. If this is not the case, in the first annual block of their Masters programme, students must take supplementary classes chosen by the faculty to satisfy course prerequisites.
To enter the Master in Data Science, Information Technology orientation, the student must have a minimum of previous skills in mathematics, computer science, algorithms and probability-statistics. If this is not the case, he/she must add additional courses to his/her Master's program. The content of this additional training is determined by the program commission. The skills to be mastered correspond to those of the following courses:
Mathematics - Calculus and linear algebraThe student follows one of the following blocks:
Module 1LINFO1111 AnalysisLINFO1112 AlgebraModule 2LINGE1114 Mathematics I: analysisProbability and statisticsThe student follows one of the following blocks:
Module 1LBIR1315 Probability and statistics IILBIR1212 Probabilities and statistics (I)Module 2LEPL1108 Discrete mathematics and probabilityLEPL1109 Statistics and data sciencesProgramming and computer scienceThe student follows one of the following blocks:
LINFO1101 Introduction to programmingLINFO1104 Programming language conceptsLEPL1402 Informatics 2Un cours parmi :EN
q1 30h+22.5h 5 credits > French-friendlyTeacher(s):
> Jean-Charles Delvenne
> Jean-Charles Delvenne (compensates Vincent Blondel)
LINFO1121 Algorithms and data structuresComputer systems:The student follows one of the following blocks:
LINFO1341 Computer networksLINFO1252 Informatic SystemsNumerical methods and optimisation:The student follows one of the following blocks:
LINMA1702 Optimization models and methods IUn cours parmi :LEPL1104 Numerical methodsLINFO1113 Numerical algorithmicOther EU to be determined with the Study AdvisorDepending on his / her previous academic background, the student (in consultation with the study advisor) can add other UEs in order to acquire the necessary prerequisites for the program.